Laboratory for Epitaxial Nanostructures on Silicon and Spintronics

Affiliated Institutions

Tamara Moiseev



tel:Como: +39 031 332 7357
fax:Como: +39 031 332 7617
address:Politecnico di Milano
Polo di Como
Via Anzani 42
22100 Como
office:Via Anzani 1.03

Tamara Moiseev


Main Research Interest


  1. T. Moiseev, D. Chrastina, and G. Isella: Plasma composition by mass spectrometry in a Ar-SiH4-H2 LEPECVD process during nc-Si deposition, Plasma Chem. Plasma Processing 31, 157 (2011).
  2. G. Micard, G. Hahn, B. Terheiden, D. Chrastina, G. Isella, T. Moiseev, D. Cavalcoli, A. Cavallini, S. Binetti, M. Acciarri, A. Le Donne, M. Texier, and B. Pichaud: Electrical and structural properties of p-type nanocrystalline silicon grown by LEPECVD for photovoltaic applications, phys. stat. sol. (c) 7, 712 (2010).
  3. T. Moiseev, G. Isella, D. Chrastina, and C. Cavallotti: Langmuir probe plasma parameters and kinetic rates in a Ar--SiH4--H2 plasma during nc-Si films deposition for photovoltaic applications, J. Phys. D: Appl. Phys. 42, 225202 (2009).
  4. C. Cavallotti, M. Rondanini, T. Moiseev, D. Chrastina, and G. Isella: An investigation of the gas phase and surface chemistry active during the PECVD of nc-silicon: A detailed model of the gas phase and surface chemistry, ECS Transactions 25, 107 (2009).
  5. T. Moiseev, D. Chrastina, G. Isella, and C. Cavallotti: Plasma composition and kinetic reaction rates in a LEPECVD Ar-SiH4-H2 plasma during nc-Si films deposition for photovoltaic applications, ECS Transactions 25, 1065 (2009).
  6. T. Moiseev, D. Chrastina, G. Isella, and C. Cavallotti: Threshold ionization mass spectrometry in the presence of excited silane radicals, J. Phys. D: Appl. Phys. 42, 072003 (2009).
  7. P. L. Novikov, A. Le Donne, S. Cereda, L. Miglio, S. Pizzini, S. Binetti, M. Rondanini, C. Cavallotti, D. Chrastina, T. Moiseev, H. von Känel, G. Isella, and F. Montalenti: Crystallinity and microstructure in Si films grown by plasma-enhanced chemical vapor deposition: A simple atomic-scale model validated by experiments, Appl. Phys. Lett. 94, 051904 (2009).
  8. M. Rondanini, C. Cavallotti, D. Ricci, D. Chrastina, G. Isella, T. Moiseev, and H. von Känel: An experimental and theoretical investigation of a magnetically confined dc plasma discharge, J. Appl. Phys. 104, 013304 (2008).
  9. T. Moiseev and D. C. Cameron: On the ion flux and energy gain during pulsed DC operation of an opposed target magnetron, Surf. Coat. Technol. 200, 5306 (2006).
  10. T. Moiseev and D. C. Cameron: Estimation of the electron temperature and density from space and time-resolved O.E.S. during pulsed DC operation of an opposed target magnetron.In SVC - 48th Annual Technical Conference Proceedings, 485--490 (2005).
  11. T. Moiseev and D. C. Cameron: Comparison of the operating characteristics of an opposed target magnetron using ferromagnetic and non-ferromagnetic targets, Surf. Coat. Technol. 200, 644 (2005).
  12. T. Moiseev and D. C. Cameron: A three-step algorithm for solving 2D inverse magnetostatic problems for magnetron design applications, Inv. Prob. Sci. Eng. 13, 279 (2005).
  13. T. Moiseev and D. C. Cameron: Pulsed dc operation of a Penning-type opposed target magnetron, J. Vac. Sci. Technol. A 23, 66 (2005).
  14. T. Moiseev: Study on photon sensitivity of silicon diodes related to materials used for shielding, Nucl. Instrum. Methods Phys. Rev. A 432, 527 (1999).
  15. T. Moiseev: Computational study of a small size neutron moderator for use on neutron dosemeters based on silicon diodes, Radiat. Prot. Dosim. 84, 399 (1999).
  16. T. Moiseev: Study of a moderator type electronic neutron dosemeter for personal dosimetry, Radiat. Prot. Dosim. 70, 93 (1999).
  17. J. Barthe, T. Lahaye, T. Moiseev, and G. Portal: Personal neutron diode dosemeter, Radiat. Prot. Dosim. 47, 397 (1993).

Copyright © 2010 L-NESS Como