

## Low Thermal Budget Fabrication of III-V Quantum Nanostructures on Si Substrates

Sergio BIETTI<sup>1</sup>, Claudio SOMASCHINI<sup>1</sup>, Nobuyuki KOGUCHI<sup>1</sup>, Stefano SANGUINETTI<sup>1</sup>, Giovanni ISELLA<sup>2</sup>, Daniel CHRASTINA<sup>2</sup> and Alexey FEDOROV<sup>2</sup> <sup>1</sup> LNESS and Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Italy <sup>2</sup> CNISM, L-NESS and Dipartimento di Fisica, Politecnico di Milano, Italy





## Introduction

We present a low thermal budget procedure for the integration of high quality AlGaAs/GaAs quantum nanostructures on Si Substrate.

For the nanostructure growth we selected an intrinsecally low thermal budget technique, the droplet epitaxy [2]. Being performed at 200-350° C, droplet epitaxy is perfectly suited for the realization of growth procedures compatible with back-end integration of III-V nanostructures on CMOS.

To accomodate large lattice mismatch between GaAs and Si, a 2 µm fully relaxed Ge layer was deposited on silicon (001) substrate, 6° misoriented towards [110] by Low-Energy Plasma-Enhanced Chemical Vapour Deposition (LEPECVD) [1] in order to form a Ge virtual substrate (GeVS). Threading dislocation density is reduced to  $2 \times 10^7$  cm<sup>-2</sup> by *in situ* thermal annealing cycles between 600 and 780°C







We demonstrated the possibility to obtain self-aggregation of quantum nanostructures by droplet epitaxy on a GaAs/Ge/Si substrate, using standard high temperature deposition for GaAs and AlGaAs buffer layer and post growth annealing [3]. Atomic Force Microscope image confirms the formation of quantum dots on the surface with density of about  $1 \times 10^{10} \text{ cm}^{-2}$ .

We fabricated quantum nanostructure active layer for infrared detector at 350°C [4]. This temperature is fully compliant with low thermal budget requirements of back-end CMOS technology. AFM image 1.0 shows the formation of quantum nanostructures we called Coupled Ring-Disks [5] with a density of  $6 \times 10^8$  cm<sup>-2</sup>.





Photoluminescence measurement





Photoluminescence spectrum at 14 K of the quantum dot capped sample shows an intense emission peak at 1.78 eV, in good agreement with the calculated value of  $E_{m} = 1.75$ eV.



![](_page_0_Figure_21.jpeg)

The photoluminescence emission is clearly detectable at room temperature, where photoluminescence intensity is reduced by a factor ~400 respect to the low temperature case.

on coupled ring-disk sample shows an intense emission peak at 1.53 eV, in good agreement with theoretical emission energy of  $E_{gs}$ =1.56 eV. Electron and hole are confined in the inner ring, and the excited state is extended along the external disk. The value of quantum efficiency,  $\eta \sim 3 \times 10^{-3}$ , well compares with  $\eta \sim 1 \times 10^{-2}$ calculated for standard quantum dots grown by droplet epitaxy.

![](_page_0_Figure_24.jpeg)

E(eV)

| Thermal            | Germanium virtual substrate               | AlGaAs buffer | Quantum Nanostructures                                             | Annealing                              |
|--------------------|-------------------------------------------|---------------|--------------------------------------------------------------------|----------------------------------------|
| Budget and<br>CMOS | Deposited at 500°C<br>annealing 600-780°C | MEE at 350°C  | Droplet Epitaxy<br>between 200-350°C                               | Rapid Thermal Annealing<br>600°C 4 min |
| compatibility      | CMOS front-end                            | CMOS back-end | CMOS back-end                                                      | CMOS back-end                          |
| Conclusions        |                                           |               | budget procedure. In particular, the fabrication procedure for the |                                        |

We demonstrated the possibility to grow high quality and high efficiency III-V quantum nanostructures on Silicon substrate, using a low thermal

germanium virtual substrate we propose is compliant with front-end CMOS integration, while the growth procedure for the AlGaAs/GaAs active region is fully compliant with CMOS back-end integration.

[1] G.Isella, D.Chrastina et al. Solid State Electron. 48 (2004), 1317 [2] N. Koguchi, S. Takahashi, and T. Chikyow. J. Cryst. Growth 111 (1991), 688 [3] S.Bietti, C.Somaschini, S Sanguinetti et al IOP Conf. Ser.: Mater. Sci.Eng. 6 (2009) 012009

[4] S.Bietti, C.Somaschini, S.Sanguinetti, N.Koguchi, G.Isella and D.Chrastina Appl. Phys. Lett. 95 (2009) 241102 [5] C.Somaschini, S.Bietti, S.Sanguinetti, N.Koguchi and A.Fedorov Nanotechnology 21 (2010) 125601